Tangle-tree duality in abstract separation systems

نویسندگان

  • Reinhard Diestel
  • Sang-il Oum
چکیده

We prove a general width duality theorem for combinatorial structures with well-defined notions of cohesion and separation. These might be graphs and matroids, but can be much more general or quite di↵erent. The theorem asserts a duality between the existence of high cohesiveness somewhere local and a global overall tree structure. We describe cohesive substructures in a unified way in the format of tangles: as orientations of low-order separations satisfying certain consistency axioms. These axioms can be expressed without reference to the underlying structure, such as a graph or matroid, but just in terms of the poset of the separations themselves. This makes it possible to identify tangles, and apply our tangle-tree duality theorem, in very diverse settings. Our result implies all the classical duality theorems for width parameters in graph minor theory, such as path-width, tree-width, branch-width or rank-width. It yields new, tangle-type, duality theorems for tree-width and path-width. It implies the existence of width parameters dual to cohesive substructures such as k-blocks, edge-tangles, or given subsets of tangles, for which no width duality theorems were previously known. Abstract separation systems can be found also in structures quite un-separation systems can be found also in structures quite unlike graphs and matroids. For example, our theorem can be applied to image analysis by capturing the regions of an image as tangles of separations defined as natural partitions of its set of pixels. It can be applied in big data contexts by capturing clusters as tangles. It can be applied in the social sciences, e.g. by capturing as tangles the few typical mindsets of individuals found by a survey. It could also be applied in pure mathematics, e.g. to separations of compact manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangle-tree duality: in graphs, matroids and beyond⇤

We apply a recent duality theorem for tangles in abstract separation systems to derive tangle-type duality theorems for width-parameters in graphs and matroids. We further derive a duality theorem for the existence of clusters in large data sets. Our applications to graphs include new, tangle-type, duality theorems for tree-width, path-width, and tree-decompositions of small adhesion. Conversel...

متن کامل

Duality Theorems for Blocks and Tangles in Graphs

We prove a duality theorem applicable to a a wide range of specialisations, as well as to some generalisations, of tangles in graphs. It generalises the classical tangle duality theorem of Robertson and Seymour, which says that every graph either has a large-order tangle or a certain low-width tree-decomposition witnessing that it cannot have such a tangle. Our result also yields duality theore...

متن کامل

Tangles and the Mona Lisa

We show how an image can, in principle, be described by the tangles of the graph of its pixels. The tangle-tree theorem provides a nested set of separations that efficiently distinguish all the distinguishable tangles in a graph. This translates to a small data set from which the image can be reconstructed. The tangle duality theorem says that a graph either has a certainorder tangle or a tree-...

متن کامل

Unifying duality theorems for width parameters in graphs and matroids I. Weak and strong duality

We prove a general duality theorem for width parameters in combinatorial structures such as graphs and matroids. It implies the classical such theorems for path-width, tree-width, branch-width and rank-width, and gives rise to new width parameters with associated duality theorems. The dense substructures witnessing large width are presented in a unified way akin to tangles, as orientations of s...

متن کامل

Multidimensional fuzzy finite tree automata

This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017